Tissue damage plasma source to open cosmetic treatments door

By Michelle Yeomans

- Last updated on GMT

Tissue damage plasma source to open cosmetic treatments door

Related tags Molecular biology Skin Oxygen

Scientists at the University of Notre Dame, Indiana say inducing biological tissue damage with an atmospheric pressure plasma source could open the door to cosmetics applications.

Under the supervision of the University's Associate Professor Sylwia Ptasinska, Xu Han and colleagues conducted a quantitative and qualitative study of the different types of DNA damage induced by atmospheric pressure plasma exposure.

Specifically, it is understanding the interaction of so-called atmospheric pressure plasma jets with biological tissues that could help various industries. 

Although the paper is published in the European Physical Journal as part of a special issue on nanoscale insights into Ion Beam Cancer Therapy, the scientists hope the approach could ultimately lead to devising alternative tools for skin diseases, chronic wounds and cosmetics treatments too.

The leading supervisor Ptasinska told CosmeticsDesign-Europe.com that this type of plasma can work in beauty treatments in that it can easily remove numerous layers of skin during treatment and that there has already been some studies conducted on the skin for the removal of dark spots for example. 

The  'agarose gel electrophoresis' method

The team set out to investigate the DNA damage from the so-called non-thermal Atmospheric Pressure Plasma Jet (APPJ), and adopted a common technique used in biochemistry, called agarose gel electrophoresis.

Under two conditions of the helium plasma source with different parameters of electric pulses, the scientists then studied the nature and level of DNA damage by plasma species, so-called reactive radicals.

They also identified the effect of water on DNA damage. To do so, they examined the role of reactive radicals involved in DNA damage processes occurring in an aqueous environment before comparing them to previous results obtained in dry DNA samples.

Xu Han and colleagues say the next step now will involve investigating plasma made from helium mixtures with different molecular ratios of other gases, such as oxygen, nitrous oxide, carbon dioxide and steam, under different plasma source conditions. 

Full bibliographic information: ​X.Han, W. A. Cantrell, E. E. Escobar and S. Ptasinska (2014), Plasmid DNA damage induced by induced by Helium Atmospheric Pressure Plasma Jet, European Physical Journal D, DOI 10.1140/epjd/e2014-40753-y

For more information: www.epj.org.

Related topics Formulation & Science Skin Care

Related news

Related products

show more

Exosomes: Passing Trend or Transformative Reality?

Exosomes: Passing Trend or Transformative Reality?

Content provided by Naolys | 26-Mar-2024 | White Paper

Exosomes, microscopic vesicles naturally present in abundance within Plant Cells, have garnered significant attention within the scientific and cosmetic...

How Nutricosmetics Can Enhance Skin Beauty

How Nutricosmetics Can Enhance Skin Beauty

Content provided by Activ'Inside | 11-Dec-2023 | White Paper

In the ever-evolving realm of nutricosmetics, where inner wellness meets outer beauty, few natural ingredients have captured the spotlight quite like grapes.

Ultimate Antimicrobial Solution for BPC

Ultimate Antimicrobial Solution for BPC

Content provided by Acme-Hardesty Company | 11-Oct-2023 | White Paper

Sharomix™ EG10, a versatile broad-spectrum antimicrobial liquid blend for preserving personal care products, ensures safety at usage levels ranging from...

Acme-Hardesty Expands Product Line into Canada

Acme-Hardesty Expands Product Line into Canada

Content provided by Acme-Hardesty Company | 07-Jul-2023 | Product Brochure

Acme-Hardesty’s latest expansion into Canada includes Resplanta®, Botaneco®, and BYK from our partners Sharon Personal Care and Eckart Effect Pigments...

Related suppliers