P&G research team finds chelant use in shampoo improves hair health

By Andrew MCDOUGALL contact

- Last updated on GMT

P&G research team finds chelant use in shampoo improves hair health

Related tags: Research team, Uv exposure, Oxygen, Ultraviolet

P&G scientists have found that the use of chelants in shampoos and conditioners will reduce copper levels in hair and ultimately lead to improved hair health, particularly when exposed to ultraviolet radiation.

The research team, which also consisted of colleagues from IQAC-CSIC in Barcelona, the Ohio State University, and the University of Cincinnati College of Medicine, published their findings in the International Journal of Cosmetics Science​ using the examples of EDDS and histidine as effective chelants for use in shampoos and conditioners, respectively.

Damage to hair from UV exposure is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS).

Therefore the research team set about understanding these mechanisms, to explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species.


To do this, the location of copper in hair was measured by Transmission electron microscopy–(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES, in virgin Caucasian-source hair, purchased from International Hair Importers & Products.

Protein changes were also measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments; which originates from the calcium-binding protein S100A3.

Sensory methods and dry combing friction were then used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage.

“Exposure to UV will damage hair as measured by protein loss and this damage will be accelerated in the presence of copper ions from tap water taken up by hair,” ​says the study. “This structural degradation in combination with physical damage from combing/washing, etc. will over time lead to loss of shine, poor combing and poor hair health.”

“The use of chelants such as EDDS and histidine in shampoos and conditioners, respectively, will reduce copper levels in hair and ultimately lead to improved hair health.”


Hair damage from UV exposure has been shown to occur to the keratin proteins, lipids, and melanin, eventually leading to colour changes and also noticeable physical changes such as split ends, loss of shine and manageability.

Maintaining hair health is a key need for women globally, so the research team says it embarked on this study to better understand the mechanisms of UV damage and identify technology to prevent this damage, which is a high priority for the cosmetics industry.

Related topics: Formulation & Science, Hair Care

Related products

show more



SABINSA: Innovating the Science of Cosmetics® | 01-Nov-2019 | Technical / White Paper

Beta-glucogallin is the potent anti-aging molecule in Saberry® responsible for preventing oxidative stress and degradation of skin proteins. This patented...

New, Modern Hair Conditioning Ingredient

New, Modern Hair Conditioning Ingredient

Stepan Company | 06-Oct-2019 | Product Brochure

Two of the most common cationic hair conditioning agents, behentrimonium chloride (BTAC) and cetrimonium chloride (CETAC), have been under scrutiny due...

Floraesters® K-100 – Say Yes to Shine

Floraesters® K-100 – Say Yes to Shine

Floratech | 18-Sep-2019 | Product Presentation

Strengthen, condition and protect hair with Floraesters K-100® Jojoba. Use natural, multifunctional Floraesters K-100 Jojoba to increase shine, and to...



SABINSA: Innovating the Science of Cosmetics® | 06-Sep-2019 | Data Sheet

Patented technology yields the novel probiotic metabolite, LactoSporin®. Derived from Bacillus coagulans MTCC 5856, but with no live cells, LactoSporin...

Related suppliers

Follow us

Featured Events

View more


View more